

## CHARGER SIZING FORMULAS

1. CALCULATING CHARGER REQUIREMENTS

$$A = \frac{1.1C}{H} + L$$

2. CALCULATING HOURS TO RECHARGE

$$H = \frac{1.1C}{A - L}$$

3. CALCULATING CHARGER LOSSES (BTUs)

BTUS PER HOUR = 
$$\left(\frac{1}{EFF} - 1\right) \times Wdc \times 3.42$$

4. CALCULATING CHARGER INPUT CURRENT DRAIN SINGLE-PHASE CHARGERS

$$I_{IN} = \frac{E_{OUT} \times I_{OUT}}{E_{IN} \times EFF \times P.F.}$$

THREE-PHASE CHARGERS

$$I_{IN} = \frac{E_{OUT} \times I_{OUT}}{E_{IN} \times EFF \times P.F. \times \sqrt{3}}$$

## TABLE OF CONVENTIONS

- A = DC output rating of charger in amperes
- 1.1 = Efficiency factor to return 100% ampere-hours removed from a lead-acid battery. Use 1.4 for NiCad batteries.
- C = Calculated number of ampere-hours discharged from battery. (time in hours x load)
- H = Number of hours recharge time
- L = Load on system in amperes
- Wdc = Output volts x output amperes
  - I<sub>IN</sub> = Input current (amperes ac)
- Eour = Output voltage (volts dc)
- lout = Output current (amperes dc)
- E<sub>IN</sub> = Input vollage (volts ac)
- EFF = Efficiency (e.g. 88% = 0.88)
- P.F. = Power Factor (E.G. 92% = 0.92)
- √3 = 1.7321

# CHARGER & POWER CABLE SIZING FORMULAS

## POWER CABLING FORMULAS

#### WIRE GAUGE TABLE

| SIZE<br>AWG | AREA<br>CIRC.<br>MILS | SIZE<br>AWG<br>MCM* | AREA<br>CIRC.<br>MILS | SIZE<br>AWG<br>MCM* | AREA<br>CIRC.<br>MILS |
|-------------|-----------------------|---------------------|-----------------------|---------------------|-----------------------|
| 18          | 1,620                 | 1                   | 83,690                | 600                 | 600,000               |
| 16          | 2,580                 | 0                   | 105,600               | 700                 | 700,000               |
| 14          | 4,110                 | 00                  | 131,100               | 750                 | 750,000               |
| 12          | 6,530                 | 000                 | 167,800               | 800                 | 800,000               |
| 10          | 10,380                | 0000                | 211,600               | 900                 | 900,000               |
| 8           | 16,510                | 250                 | 250,000               | 1,000               | 1,000,000             |
| 6           | 26,240                | 300                 | 300,000               | 1,250               | 1,250,000             |
| 4           | 41,740                | 350                 | 350,000               | 1,500               | 1,500,000             |
| 3           | 52,620                | 400                 | 400,000               | 1,750               | 1,750,000             |
| 2           | 66,360                | 500                 | 500,000               | 2,000               | 2,000,000             |

SOURCE: Handbook 100 National Bureau of Standards. NOTE: All wire size #6 and larger is stranded. \* All sizes larger than #0000 are expressed in MCM.

### 1. CALCULATING WIRE SIZE REQUIREMENTS

$$\mathsf{CMA} = \frac{\mathsf{A} \times \mathsf{LF} \times \mathsf{K}}{\mathsf{AVD}}$$

#### 2. CALCULATING CURRENT CARRYING CAPACITY OF WIRE

MAX. AMP = 
$$\frac{CMA \times AVD}{LF \times K}$$

## TABLE OF CONVENTIONS

- CMA = Cross section of wire In circular MIL area
  - A = Ultimate drain in amperes
  - LF = Conductor loop feet
- MAX. AMP = Maximum allowable amperes for given voltage drop
  - AVD = Allowable voltage drop
    - K = 11.1 constant factor for commercial (TW type) copper wire (KS5482-01)
      - = 17.4 for aluminum (KS20189)

www.unipowerco.com

© 2020 UNIPOWER LLC This document is believed to be correct at time of publication and UNIPOWER LLC accepts no responsibility for consequences from printing errors or inaccuracies. All specifications subject to change without notice.