CHARGER SIZING FORMULAS

1. CALCULATING CHARGER REQUIREMENTS

\[A = \frac{1.1C}{H} + L \]

2. CALCULATING HOURS TO RECHARGE

\[H = \frac{1.1C}{A - L} \]

3. CALCULATING CHARGER LOSSES (BTUs)

\[\text{BTUs per hour} = \left(\frac{1}{\text{EFF}} - 1\right) \times \text{Wdc} \times 3.42 \]

4. CALCULATING CHARGER INPUT CURRENT DRAIN

SINGLE-PHASE CHARGERS

\[I_{IN} = \frac{E_{OUT} \times I_{OUT}}{E_{IN} \times \text{EFF} \times \text{P.F.}} \]

THREE-PHASE CHARGERS

\[I_{IN} = \frac{E_{OUT} \times I_{OUT}}{E_{IN} \times \text{EFF} \times \text{P.F.} \times \sqrt{3}} \]

TABLE OF CONVENTIONS

- \(A \) = DC output rating of charger in amperes
- \(C \) = Efficiency factor to return 100% ampere-hours removed from a lead-acid battery.

 Use 1.4 for NiCad batteries.
- \(C \) = Calculated number of ampere-hours discharged from battery. (time in hours \(\times \) load)
- \(H \) = Number of hour recharge time
- \(L \) = Load on system in amperes
- \(\text{Wdc} \) = Output volts \(\times \) output amperes
- \(I_{IN} \) = Input current (amperes ac)
- \(E_{OUT} \) = Output voltage (volts dc)
- \(I_{OUT} \) = Output current (amperes dc)
- \(E_{IN} \) = Input voltage (volts ac)
- \(\text{EFF} \) = Efficiency (e.g. 88% = 0.88)
- \(\text{P.F.} \) = Power Factor (e.g. 92% = 0.92)
- \(\sqrt{3} = 1.7321 \)

POWER CABLELING FORMULAS

WIRE GAUGE TABLE

<table>
<thead>
<tr>
<th>SIZE</th>
<th>AWG</th>
<th>AREA CIRC.</th>
<th>SIZE</th>
<th>AWG MCM</th>
<th>AREA CIRC.</th>
<th>SIZE</th>
<th>AWG MCM</th>
<th>AREA CIRC.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MILS</td>
<td></td>
<td></td>
<td>MILS</td>
<td></td>
<td></td>
<td>MILS</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>1,620</td>
<td>16</td>
<td>0</td>
<td>83,690</td>
<td>14</td>
<td>0</td>
<td>600,000</td>
</tr>
<tr>
<td>16</td>
<td>2,580</td>
<td>0</td>
<td>12</td>
<td>00</td>
<td>167,800</td>
<td>10</td>
<td>00</td>
<td>800,000</td>
</tr>
<tr>
<td>14</td>
<td>4,110</td>
<td>00</td>
<td>10</td>
<td>380</td>
<td>211,600</td>
<td>8</td>
<td>650</td>
<td>900,000</td>
</tr>
<tr>
<td>12</td>
<td>6,530</td>
<td>250</td>
<td>8</td>
<td>150</td>
<td>250,000</td>
<td>6</td>
<td>254</td>
<td>1,000,000</td>
</tr>
<tr>
<td>10</td>
<td>10,380</td>
<td>300</td>
<td>6</td>
<td>600</td>
<td>300,000</td>
<td>4</td>
<td>350</td>
<td>1,250,000</td>
</tr>
<tr>
<td>12</td>
<td>16,510</td>
<td>350</td>
<td>4</td>
<td>417</td>
<td>350,000</td>
<td>3</td>
<td>526</td>
<td>1,500,000</td>
</tr>
<tr>
<td>14</td>
<td>26,240</td>
<td>400</td>
<td>2</td>
<td>66,360</td>
<td>500,000</td>
<td></td>
<td></td>
<td>1,750,000</td>
</tr>
<tr>
<td>16</td>
<td>41,740</td>
<td>500</td>
<td></td>
<td></td>
<td>600,000</td>
<td></td>
<td></td>
<td>2,000,000</td>
</tr>
</tbody>
</table>

SOURCE: Handbook 100 National Bureau of Standards.

NOTE: All wire size #6 and larger is stranded.

* All sizes larger than #0000 are expressed in MCM.

1. CALCULATING WIRE SIZE REQUIREMENTS

\[CMA = \frac{A \times LF \times K}{AVD} \]

2. CALCULATING CURRENT CARRYING CAPACITY OF WIRE

\[\text{MAX. AMP} = \frac{CMA \times AVD}{LF \times K} \]

TABLE OF CONVENTIONS

- \(CMA \) = Cross section of wire in circular MIL area
- \(A \) = Ultimate drain in amperes
- \(LF \) = Conductor loop feet
- \(\text{MAX. AMP} \) = Maximum allowable amperes for given voltage drop
- \(\text{AVD} \) = Allowable voltage drop
- \(K \) = 11.1 constant factor for commercial (TW type) copper wire (KS5482-01)

 = 17.4 for aluminum (KS20189)